
Deep Neural Network: What is it and how is it working?
The Deep Neural Network imitates the functioning of the human brain. Find out everything you need to know about it: definition, functioning, use cases, training A neural
Le Deep Learning est une discipline d’intelligence artificielle, et plus précisément une branche du Machine Learning. Elle consiste à laisser les machines apprendre à partir de leurs expériences, à la manière des humains.
La différence avec le Machine Learning est que les algorithmes de Deep Learning n’ont pas réellement de limite en termes de capacité d’apprentissage. Plus ils reçoivent de données sur lesquels s’entraîner, plus ces systèmes améliorent leurs performances.
Les réseaux de neurones artificiels sur lesquels repose le Deep Learning apprennent en découvrant des structures dans les données qui leur sont fournies. Ces réseaux développent des modèles de calculs composés de multiples couches de traitement, afin de créer de multiples niveaux d’abstraction pour représenter les données.
Un modèle de Deep Learning de type réseau neuronal convolutif peut être entraîné sur des millions d’images de chats. Il apprendra alors à reconnaître les pixels représentant un chat, afin de les classifier comme tels.
Avec un système de Machine Learning conventionnel, un expert humain devrait passer un temps considérable à paramétrer le système pour lui permettre de détecter les caractéristiques du chat. Dans le cas du Deep Learning, il suffit de lui fournir une grande quantité d’images.
Les performances des algorithmes de Deep Learning surpassent celles des systèmes de Machine Learning dans un grand nombre de tâches dont la vision par ordinateur, la reconnaissance de discours ou la robotique. Il est toutefois nécessaire de configurer les ”hyperparamètres” pour que le modèle soit efficace.
Le Deep Learning est utilisé pour une large variété d’applications telles que la détection de maladie, l’inspection d’équipement industriel, les véhicules autonomes, la découverte d’exoplanètes ou de médicaments, l’étude du génome ou encore la lutte contre le réchauffement climatique.
The Deep Neural Network imitates the functioning of the human brain. Find out everything you need to know about it: definition, functioning, use cases, training A neural
This article will be divided into two parts: The first focuses on the choice of metrics specific to this type of data, the second details the range
Classification of unbalanced data is a classification problem where the training sample contains a strong disparity between the classes to be predicted. This problem is frequently encountered
According to the statistics of the Workflow Management Coalition, workflows are at the heart of every company’s IT management. Whether you identify, monitor and manage them or
This is a word we often use in IT, but what exactly is it ? A framework is a conceptual or real structure that you can build
NumPy is a very popular Python library that is mainly used to perform mathematical and scientific calculations. It offers many features and tools that can be useful