Du hast Fragen? Wir haben Antworten! - Bald findet unser nächster Tag der offenen Tür statt!

Logo site
Weiterbildung

Analytics Engineer Learning

Bootcamp (6 Monate)
Teilzeit (13 Monate)
Erhalten Sie einen anerkannten Abschluss, Unterstützung bis zur Einstellung und einen flexiblen Arbeitsplatz, der sehr begehrt ist.
UNSERE NÄCHSTEN KURSSTARTS SIND:
06. August 2024
10. September 2024
01. Oktober 2024
logo sorbonne
Unsere Zertifizierung wird von der Pariser Universität La Sorbonne ausgestellt.

Lerninhalte

icon 

Einführung in Python(45 Std.)

  • Python Grundlagen
  • NumPy
  • Pandas
data-viz 

Datenvisualisierung (35 Std.)

  • Matplotlib
  • Seaborn
  • Art of Storytelling
illu-2 

Machine Learning (35 Std.)

  • Methoden der Klassifizierung
  • Methoden der Regression
  • Pipelines
illu-3 

Machine Learning (35 Std.)

  • Scikit-Learn
  • Überwachtes Lernen
  • Unüberwachtes Lernen
illu-4 

Datenextraktion und -verwaltung (25 Std.)

  • Text Mining
  • Webscraping
illu-1 

Business intelligence (30 Std.)

  • Power Bi
  • Tableau
  • Looker Studio
 

Big Data / Database (25 Std.)

  • SQL
  • Datenverarbeitung
  • Modellierung von Daten
illu-2 

Objektorientierte Programmierung

  • Python
  • Qualität der Daten
  • APIs
  • Datenprofilierung
 

Datenintegration / -eingabe

  • Linux
  • Datenintegration
  • Git
illu-2 

Fortgeschrittenes SQL/NoSQL

  • SQL
  • Dataset in SQL
  • NoSQL Datenbank
illu-2 

Data Warehousing

  • Snowflake
  • Allgemeines Data Warehousing
  • BigQuery
illu-2 

Streaming & belastbare Analytik

  • ETL mit pySpark
  • Airflow
  • Data Analyse
illu-2 

Business Intelligence & ETL

  • PowerBI
  • Tableau

Während des gesamten Curriculums, ermöglichen Projekte die Auseinandersetzung mit und das Verständnis für die folgenden Themen:

  • Entwicklung einer datenanalytischen Denkweise ,
  • die Erstellung einer ETL-Pipeline
Der Kurs Analytics Engineer verleiht Ihnen die Fähigkeiten, die Sie benötigen, um sich für die PL-300-Zertifizierung von Microsoft zu qualifizieren: "Datenanalyse mit Microsoft Power BI".

Unser hybrides Lernformat

Die Kombination aus unserer interaktiven Lernplattform und von erfahrenen Data Scientists geleiteten Masterclasses hat bereits über 15.000 Alumni überzeugt und unseren Kursen eine Abschlussquote von über 94 % verliehen!
 
Unsere pädagogische Methode basiert auf dem Prinzip Learning-by-Doing:
 
  • Praktische Anwendung: Alle unsere Lernmodule beinhalten Online-Übungen, damit Du die im Kurs entwickelten Konzepte direkt anwenden kannst
  • Masterclass: Für jedes Modul werden 1 bis 2 Masterclasses live mit einem Dozierenden organisiert, die es ermöglichen, Deine Fragen und eventuelle Probleme zu klären sowie Methoden und Werkzeuge  aus dem Bereich der Data Science zu besprechen.

Die Zielsetzung eines Analytics Engineer

Der Analytics Engineer ist auf die Verwaltung, Umwandlung und Modellierung von Daten spezialisiert. Er liefert Datensätze, die für alle verständlich sind, und wendet dabei optimale Visualisierungsverfahren an. Er ist für die strategische Datenoptimierung unerlässlich und ermöglicht eine optimale Analyse und Nutzung, um komplexe Probleme zu lösen oder sogar Vorhersagemodelle zu entwickeln.

 

Aufbereitung und Verwaltung von Daten:

Effiziente Bereinigung, Verarbeitung und Verwaltung von Datenströmen.

Entwicklung und Anwendung von maschinelle Lernanalyse:

Erstellung und Optimierung von Modellen für prädiktive Analysen.

Analyse von Ergebnissen:

Interpretation der Ergebnisse und Management von Datenprojekten mit der Erstellung von Visualisierungen.

Entdecke Learn, unsere neue Learning Plattform!

Eine umfangreiche und intuitive Benutzeroberfläche für eine individuelle Lernerfahrung. Profitiere von einer verbesserten Plattform und einer professionellen Betreuung.

Du hast die Fragen? Wir haben die Antworten!

Akkordeon Inhalt

Der Analytics Engineer, ein wachsender Beruf, der erst 2018 definiert wurde, und ist an der Schnittstelle zwischen Data Analysts und Data Engineers angesiedelt, was ihn zu einem wichtigen Aktivposten im Datenmanagement von Unternehmen macht.

Als Spezialist für Datenmanagement, -transformation und -modellierung liefert er Datensätze, die für alle verständlich sind, und wendet bewährte Visualisierungsverfahren wie Versionskontrolle und kontinuierliche Integration an.

Im Vergleich zu traditionellen Datenberufen hebt sich der Analytics Engineer dadurch ab, dass er eng mit Data Analysten und Data Scientists zusammenarbeitet, um auf die Geschäftsanforderungen zugeschnittene Analyselösungen zu entwickeln.

Angesichts der steigenden Nachfrage nach den fortgeschrittenen Fähigkeiten in der Code-Analyse und der Entscheidungsfindung in Unternehmen ist diese Rolle, die manchmal mit „AE“ abgekürzt wird, für die strategische Datenoptimierung unerlässlich und ermöglicht eine optimale Analyse und Nutzung im Hinblick auf die Lösung komplexer Probleme und die Entwicklung prädiktiver Modelle.

Im Gegensatz zum Data Analyst, der sich in erster Linie auf die Datenanalyse konzentriert, sieht der Analytics Engineer den Schwerpunkt seiner Arbeit in der Modellierung von Daten, um den Endnutzern den Zugang zu ihnen zu erleichtern. Dieser Ansatz ermöglicht es den Benutzern, die meisten ihrer datenbezogenen Fragen selbst zu beantworten. Ein erfahrener Analytics Engineer wird die Daten, für die er oder sie verantwortlich ist, umwandeln, testen, bereitstellen und dokumentieren.

Hier finden Sie eine detailliertere Liste der Aufgaben eines Analytics Engineers:

  • Datenmodellierung und -umwandlung: Analytics Engineers müssen Daten strukturieren, bereinigen und für die Analyse vorbereiten, um ihre Genauigkeit und Zuverlässigkeit zu gewährleisten.
  • Datenintegration und Entwicklung von Pipelines: Um den Geschäftsanforderungen gerecht zu werden, entwerfen sie Pipelines zum Extrahieren, Transformieren und Laden von Daten höherer Qualität.
  • Datenvalidierung und -tests: Ingenieure führen Unit-, Integrations- und Leistungstests durch, um die Zuverlässigkeit von Datenpipelines zu bewerten, und implementieren anschließend Validierungsverfahren, um die Zuverlässigkeit ihrer Daten zu gewährleisten.
  • Zusammenarbeit mit Interessengruppen: Um relevante und umsetzbare Datensätze zu liefern, arbeiten sie eng mit Stakeholdern und anderen Beteiligten zusammen.
  • Datendokumentation: Analytics Engineers sind für die Dokumentation von Datenprozessen verantwortlich und gewährleisten die Transparenz und Reproduzierbarkeit von Datentransformationen und implementierten Workflows.
  • Anwendung von Best Practices in der Softwareentwicklung: Sie wenden Praktiken wie Modularität, Wiederverwendbarkeit von Code und Versionsmanagement an, um effiziente und aktuelle Analyse-Lösungen zu gewährleisten.

Kontinuierliche Verbesserung: Analytics Engineers halten sich über die neuesten Technologien und Trends in ihrem Markt und in der Praxis auf dem Laufenden und verpflichten sich zur kontinuierlichen Verbesserung.

Um ihre Arbeit erfolgreich zu erledigen, müssen Analytics Engineers Schlüsselkompetenzen in den Bereichen Programmierung, Analyse, Visualisierung und allgemeine Kommunikation beherrschen.

Hier ist eine detaillierte Liste der Fähigkeiten, die erforderlich sind, um ein anerkannter Analytics Engineer zu werden:

  • Erfahrung in der Datenbranche: Für Analytics Engineers ist Erfahrung in datenzentrierten Umgebungen entscheidend. Bei denjenigen, die Analytics Engineers werden wollen, handelt es sich größtenteils um Datenanalysten oder Dateningenieure, die sich auf die Datenmodellierung spezialisieren wollen.
  • Fortgeschrittene SQL-Kenntnisse: Die Beherrschung von SQL ist für einen Analytics Engineer unerlässlich, da die meisten seiner Aufgaben die Abfrage, Manipulation und Umwandlung von Daten in Datenbanken beinhalten. SQL ist entscheidend für die Extraktion genauer Informationen, die die Daten für die anschließende Analyse vorbereiten.
  • Programmierkenntnisse: Zusätzlich zu SQL ist die Beherrschung von Programmiersprachen wie R und Python von entscheidender Bedeutung. Diese Sprachen sind für die Visualisierung von Daten sowie für die Entwicklung von Vorhersagemodellen und Algorithmen für maschinelles Lernen unerlässlich.
  • Beherrschung der DBT-Technologie: Dbt (Data Build Tool) ist ein Datenumwandlungstool, das die Implementierung von Analysecode über SQL erleichtert. Es ermöglicht Analytics Engineers die effiziente Erstellung und Verwaltung von Datenpipelines.
  • Software-Engineering-Kenntnisse: Für einen Analytik Engineer ist es unerlässlich, die besten Praktiken des Software-Engineerings zu kennen und anzuwenden, z. B. Modularität, Wiederverwendbarkeit von Code, Dokumentation, Unit-Tests und Release-Management. Die Anwendung dieser Praktiken verbessert nicht nur die Robustheit des Codes, sondern ermöglicht auch die Entwicklung effizienterer Datenpipelines. Sie erleichtern auch das Change Management und stärken die Zusammenarbeit mit anderen Mitgliedern des Entwicklungsteams.

Kenntnisse von BI- und Data-Engineering-Tools: Ein Analytik-Ingenieur muss unbedingt ein gutes Verständnis für Data-Engineering- und Business-Intelligence (BI)-Tools haben. Dazu gehören Kenntnisse über Data Warehouses wie Snowflake, Amazon Redshift und Google BigQuery, ETL-Tools wie AWS Glue und Talend sowie BI-Plattformen wie Tableau und Looker. Die praktische Erfahrung mit diesen Technologien erhöht nicht nur seine Vielseitigkeit, sondern ermöglicht auch eine schnelle Anpassung an das Geschäftsumfeld.

Akkordeon Inhalt

Es gibt keine offiziellen Voraussetzungen, wir empfehlen jedoch dringend einen Bachelor-Level in einem wissenschaftlichen Fach. Diese Voraussetzungen bestehen, weil sich die Ausbildung zwar auf die Datenwissenschaft und nicht auf die Mathematik konzentriert, letztere aber für ein erfolgreiches Verständnis der behandelten Konzepte notwendig ist. Um an dem Kurs teilnehmen zu können, muss jeder zuvor einen (kostenlosen) Test absolvieren.

Um an dem Kurs teilnehmen zu können, benötigen die Lernenden außerdem einen Computer mit Internetanschluss und eine Webcam.

Die Ausbildung umfasst insgesamt 600 Stunden, von denen 150 Stunden auf Projekte entfallen. 85 % der Ausbildung finden auf einer personalisierten Coaching-Plattform statt, während die restlichen 15 % in Form von Masterclasses abgehalten werden, bei denen ein erfahrener Lehrer einen Kurs leitet und alle Ihre Fragen beantwortet. Der Lehrplan setzt sich aus 2 Modulen zusammen: Data Analyst & ETL Developer.
Neben der Plattform und den Masterclasses arbeiten Sie so an berufsbezogenen Projekten, die es Ihnen ermöglichen, nach dem Abschluss Ihres Kurses voll betriebsfähig zu sein.

Die 150 Stunden, die den Projekten zuzuordnen sind, verteilen sich wie folgt:
– Data Analyst Projekt: 90h; – ETL Developer Projekt: 60h; –
Der Analytics Engineer Kurs bietet Ihnen die Möglichkeit, einen Trainingsplan zu wählen, der Ihren Bedürfnissen entspricht: – Bootcamp-Format, intensiver Zeitplan von 35 Stunden pro Woche für 5 Monate – Teilzeitformat, das ein Engagement von 10 Stunden pro Woche für 12 Monate erfordert.
Buchen Sie einen Termin und erfahren Sie mehr

Die Bewertung der Ergebnisse erfolgt durch die Durchführung eines Bewertungsverfahrens, um festzustellen, ob der Schüler die für die Rolle des Analytics Engineer erforderlichen Fähigkeiten erworben hat.
Es gibt zwei Aspekte, die vom pädagogischen Team bewertet werden:
– Projekte, um den Lernenden in eine berufliche Situation zu versetzen
– Online-Praxisfälle zur schrittweisen Anwendung der theoretischen Kenntnisse.

Es gibt zwei Aspekte, die vom pädagogischen Team bewertet werden:
– Projekte, um den Lernenden in eine berufliche Situation zu versetzen
– Online-Praxisfälle zur schrittweisen Anwendung der theoretischen Kenntnisse.

Schließlich werden die Online-Bewertungen von unserem Gremium qualifizierter Lehrkräfte von Hand korrigiert: Es wird alles getan, um sicherzustellen, dass jeder Lernende effizient und in seinem eigenen Tempo Fortschritte machen kann. Wir bei DataScientest sind davon überzeugt, dass nur eine individuelle Betreuung die Qualität des Lernens gewährleistet!

Am Ende des Kurses werden Sie in der Lage sein:

  • Sortieren, Bereinigen und Verarbeiten von Daten für die Analyse
  • Entwicklung von Modellen des maschinellen Lernens für prädiktive Analysen
  • Ergebnisse interpretieren und Dashboards erstellen
  • Beherrschen von Datenmodellierungs- und Transformationstechniken.
  • Entwerfen und Verwalten von Datenpipelines.
  • Verwalten eines Datenprojekts

Während der gesamten Ausbildung und je nach Entwicklung Ihrer Fähigkeiten werden Sie mehrere Projekte in Gruppen durchführen, je nach der Aufteilung des Lehrplans:

Modul

Projekt

Data Analyst

Entwicklung einer Datenlösung.

ETL Developer

Erstellung einer ETL-Pipeline, von der Rohdatengewinnung bis zur Modellierung und Visualisierung.



Diese Projekte können aus unserem Katalog entnommen werden, der eine breite Palette von Themen umfasst, die sich auf technische Unternehmensfragen beziehen. Sie können auch eigene Projekte vorschlagen, sofern die Daten zugänglich sind und unser Lehrerteam sie validiert.

Dies ist eine äußerst effektive Methode, um die Theorie in die Praxis umzusetzen und sicherzustellen, dass Sie die im Unterricht behandelten Themen anwenden.

Diese Projekte werden von Unternehmen sehr geschätzt, da sie die Qualität der Ausbildung und die am Ende des Kurses für Analytics Engineer erworbenen Kenntnisse gewährleisten, da auch die Soft Skills sehr gefragt sind. Diese Projekte werden Ihnen beibringen:

  • Informationen übermitteln;
  • Ihre Arbeit zu präsentieren und zu veröffentlichen;
  • Hervorhebung von Daten mit interaktiven Tools (Dashboard, Streamlit…).

Das heißt, diese Projekte erfordern eine echte Investition, die mindestens ein Drittel Ihrer Ausbildungszeit ausmacht.

Die 150 Stunden, die für die Projekte im Rahmen des Lehrplans vorgesehen sind, lassen sich wie folgt aufteilen::

  • Data Analyst Projekt: 90h ;
  • ETL Developer Projekt: 60h ;

Die Projekte werden von DataScientest-Mentoren betreut, die in regelmäßigem Kontakt mit Ihnen stehen, um Ihre Fortschritte zu überwachen und Sie zu beraten.

Wenn Sie Ihre Kenntnisse vertiefen möchten, hat DataScientest eine Reihe von Expertenkursen und Herausgeberzertifizierungen (AWS oder Microsoft Azure) eingerichtet, die Ihnen helfen, Ihr Wissen zu vertiefen und Ihre Datenkenntnisse zu perfektionieren.

Sie können den vollständigen Power BI-Trainingskurs auch als 100 % synchronen Pfad absolvieren, wenn Sie Ihre Kenntnisse vertiefen und Ihre Chancen auf den Status „Microsoft Power BI Data Analyst Associate“ im Anschluss an den Analytics Engineer-Trainingskurs erhöhen möchten.

Als B2B-Führer im Bereich Data-Science-Ausbildung genießt DataScientest einen hohen Bekanntheitsgrad bei den Unternehmen, die uns mit der Data-Science-Ausbildung ihrer Teams vertrauen. Dieses Vertrauen führt dazu, dass viele große Unternehmen unser Diploma gerne sehen.

Das Gehalt eines Analytics Engineer in Europa hängt von mehreren Schlüsselfaktoren wie Erfahrung, Qualifikationsniveau und geografischer Lage ab. Laut Talent.com liegt das durchschnittliche Jahresgehalt für diese Position bei etwa 54.000 €. Dieser Betrag kann jedoch je nach Erfahrung beträchtlich variieren: Berufsanfänger können mit einem Gehalt von etwa 43.625 € pro Jahr beginnen, während erfahrenere Fachleute 78.000 € pro Jahr erreichen oder überschreiten können.

Die Nachfrage nach Fähigkeiten im Bereich Analytics Engineering, die je nach Marktbedarf schwanken kann, spielt bei der Festlegung der Gehälter eine Rolle. Darüber hinaus ist der geografische Standort ein wichtiger Faktor: Die Gehälter sind in der Regel in Großstädten, Ländern und Regionen mit einem gut entwickelten Technologiesektor höher. Schließlich können auch die gesammelte Erfahrung, fortgeschrittene Fähigkeiten und Zertifizierungen das Verdienstpotenzial dieser Fachkräfte erhöhen.

An Ihrem ersten Ausbildungstag erhalten Sie Zugriff auf eine spezielle Plattform für Karrieredienste, die alle wichtigen Workshops für Ihre Arbeitssuche enthält. Sie können auch nach Abschluss Ihrer Ausbildung ständig darauf zugreifen. Der Career Management Pole steht Ihnen während Ihrer gesamten Ausbildung zur Verfügung. Es besteht auch die Möglichkeit, einen individuellen Termin mit einem der Mitarbeiter zu vereinbaren, der Sie unterstützt und Ihre Fragen zu Ihrem Karrierevorhaben beantwortet.
Jeden Monat: – Ein ganzer Tag wird organisiert, um Sie bei der Optimierung Ihrer Stellensuche zu unterstützen, mit verschiedenen Themen zu Präsentation, Karrierewechsel, Gehaltsverhandlungen und technischen Testverfahren. Diese Themen werden durch weitere Workshops ergänzt, die je nach den individuellen Bedürfnissen festgelegt werden. – Sie profitieren von einem Karriereworkshop, der von einem erfahrenen Senior Consultant geleitet wird. – Es werden verschiedene Themen behandelt, die bei der Stellensuche helfen: Bekämpfung des Imposter-Syndroms, Aufbau eines Netzwerks, Verfassen eines guten Lebenslaufs und datenorientiertes Linkedin. – Nehmen Sie an einem Alumni-Talk teil. Ein Alumni ergreift das Wort, um seine Erfahrungen mit der Ausbildung und der Stellensuche zu teilen und Ihnen Tipps zu verleihen. Andererseits werden konkrete Maßnahmen ergriffen, um Sie bei der Stellensuche zu unterstützen: die von DataScientest mit seinen Partnerunternehmen organisierte Recruiting-Messe, die Organisation von Webinaren mit Datenexperten, Kommunikationsmaßnahmen zur Steigerung Ihrer Sichtbarkeit (Lebenslaufwettbewerb, DataDays, Projektartikel, die im Blog und in externen Referenzmedien veröffentlicht werden).

Außerdem wurde ein spezieller Slack-Channel für Arbeitssuchende eingerichtet, über den alle Workshop-Informationen und Jobangebote weitergeleitet werden.

Laut den Datenmanagern der größten Fortune-500-Unternehmen ist die Beherrschung der mündlichen und schriftlichen Kommunikation für einen Analytics Engineer wichtiger als die Beherrschung des Kerngeschäfts des Unternehmens. Diesem Umstand haben wir in unserem Lehrplan Rechnung getragen, der auch die Soft Skills in den Vordergrund stellt: – Mündliche Projektverteidigungen, die zur Entwicklung dieser Fähigkeiten beitragen. – Masterclasses zum Projektmanagement und zur Interpretation der Ergebnisse. – Masterclasses zu Best Practices über spezielle Tools. Sie werden auch die Möglichkeit haben, an Lebenslauf-Workshops und Karriere-Coaching durch die Karrieremanager von DataScientest teilzunehmen.

Akkordeon Inhalt

Unsere Data Scientists verschicken regelmäßig Newsletter. Diese sind eine zuverlässige Quelle für Fachinformationen aus dem Bereich Data Science.

Außerdem wächst unsere Community weiter. Um den Kontakt aufrechtzuhalten und den Teilnehmenden die Möglichkeit zu geben, sich untereinander auszutauschen, hat DataScientest eine Gruppe für seine Alumni auf LinkedIn eingerichtet, die Informationen zu verschiedenen Data Science-Themen teilen.

Die  DatAlumni Community,  ist eine LinkedIn-Community, die DataScientest-Alumni zusammenbringt. Auf dieser Seite werden Fragen, Tipps und technologische Neuigkeiten zum Nutzen aller geteilt.

Darüber hinaus wird DataScientest in den kommenden Wochen ein Trombinoskop einführen, das Alumni in Kontakt bringt.

Am Anfang begleitete DataScientest die Unternehmen bei ihrem digitalen Wandel. Dadurch sind starke Verbindungen entstanden, die das Wachstum unserer Struktur gewährleistet haben.

Aufgrund unserer Erfahrung mit Großunternehmen organisieren wir regelmäßig Rekrutierungsmessen mit unseren Partnerunternehmen, die sich an alle unsere Teilnehmenden und Alumni richten.

Am ersten Tag wird dir eine Plattform für Karrieredienste mit allen für deine Arbeitssuche wichtigen Workshops vorgestellt.

Du kannst kontinuierlich darauf zugreifen, auch nach Beendigung deiner Weiterbildung.

Morgane und Estelle, unsere Karrieremanager, sind während deiner gesamten Weiterbildung für dich da. Du kannst einen individuellen Termin mit ihnen vereinbaren, um dich zu beraten und alle Fragen zu deinem Karriereplan zu beantworten.

Darüber hinaus werden jeden Monat Karriereworkshops organisiert:

  • Ein Workshop, der dir hilft, einen guten Lebenslauf und ein datenorientiertes LinkedIn Profil zu erstellen,
  • Ein Workshop, der dir hilft, deine Jobsuche strategisch zu planen, mit verschiedenen Themen zu Präsentation, Karrierewechsel, Gehaltsverhandlungen und technischem Testtraining.

Zusätzlich zu diesen Themen gibt es weitere Workshops, die je nach den individuellen Bedürfnissen festgelegt werden. Andererseits werden konkrete Aktionen durchgeführt, um dich bei deiner Jobsuche zu unterstützen: eine von DataScientest mit seinen Partnerunternehmen organisierte Recruiting-Messe, die Organisation von Webinaren mit Datenexperten, Kommunikationsaktionen zur Steigerung deiner Sichtbarkeit (Lebenslaufwettbewerb, DataDays, Projektartikel, die im Blog und in externen Referenzmedien veröffentlicht werden).

Um mehr über alle karrierefördernden Maßnahmen von DataScientest zu erfahren, klicke auf diesen Link.

Der Beruf
Akkordeon Inhalt

Der Analytics Engineer, ein wachsender Beruf, der erst 2018 definiert wurde, und ist an der Schnittstelle zwischen Data Analysts und Data Engineers angesiedelt, was ihn zu einem wichtigen Aktivposten im Datenmanagement von Unternehmen macht.

Als Spezialist für Datenmanagement, -transformation und -modellierung liefert er Datensätze, die für alle verständlich sind, und wendet bewährte Visualisierungsverfahren wie Versionskontrolle und kontinuierliche Integration an.

Im Vergleich zu traditionellen Datenberufen hebt sich der Analytics Engineer dadurch ab, dass er eng mit Data Analysten und Data Scientists zusammenarbeitet, um auf die Geschäftsanforderungen zugeschnittene Analyselösungen zu entwickeln.

Angesichts der steigenden Nachfrage nach den fortgeschrittenen Fähigkeiten in der Code-Analyse und der Entscheidungsfindung in Unternehmen ist diese Rolle, die manchmal mit „AE“ abgekürzt wird, für die strategische Datenoptimierung unerlässlich und ermöglicht eine optimale Analyse und Nutzung im Hinblick auf die Lösung komplexer Probleme und die Entwicklung prädiktiver Modelle.

Im Gegensatz zum Data Analyst, der sich in erster Linie auf die Datenanalyse konzentriert, sieht der Analytics Engineer den Schwerpunkt seiner Arbeit in der Modellierung von Daten, um den Endnutzern den Zugang zu ihnen zu erleichtern. Dieser Ansatz ermöglicht es den Benutzern, die meisten ihrer datenbezogenen Fragen selbst zu beantworten. Ein erfahrener Analytics Engineer wird die Daten, für die er oder sie verantwortlich ist, umwandeln, testen, bereitstellen und dokumentieren.

Hier finden Sie eine detailliertere Liste der Aufgaben eines Analytics Engineers:

  • Datenmodellierung und -umwandlung: Analytics Engineers müssen Daten strukturieren, bereinigen und für die Analyse vorbereiten, um ihre Genauigkeit und Zuverlässigkeit zu gewährleisten.
  • Datenintegration und Entwicklung von Pipelines: Um den Geschäftsanforderungen gerecht zu werden, entwerfen sie Pipelines zum Extrahieren, Transformieren und Laden von Daten höherer Qualität.
  • Datenvalidierung und -tests: Ingenieure führen Unit-, Integrations- und Leistungstests durch, um die Zuverlässigkeit von Datenpipelines zu bewerten, und implementieren anschließend Validierungsverfahren, um die Zuverlässigkeit ihrer Daten zu gewährleisten.
  • Zusammenarbeit mit Interessengruppen: Um relevante und umsetzbare Datensätze zu liefern, arbeiten sie eng mit Stakeholdern und anderen Beteiligten zusammen.
  • Datendokumentation: Analytics Engineers sind für die Dokumentation von Datenprozessen verantwortlich und gewährleisten die Transparenz und Reproduzierbarkeit von Datentransformationen und implementierten Workflows.
  • Anwendung von Best Practices in der Softwareentwicklung: Sie wenden Praktiken wie Modularität, Wiederverwendbarkeit von Code und Versionsmanagement an, um effiziente und aktuelle Analyse-Lösungen zu gewährleisten.

Kontinuierliche Verbesserung: Analytics Engineers halten sich über die neuesten Technologien und Trends in ihrem Markt und in der Praxis auf dem Laufenden und verpflichten sich zur kontinuierlichen Verbesserung.

Um ihre Arbeit erfolgreich zu erledigen, müssen Analytics Engineers Schlüsselkompetenzen in den Bereichen Programmierung, Analyse, Visualisierung und allgemeine Kommunikation beherrschen.

Hier ist eine detaillierte Liste der Fähigkeiten, die erforderlich sind, um ein anerkannter Analytics Engineer zu werden:

  • Erfahrung in der Datenbranche: Für Analytics Engineers ist Erfahrung in datenzentrierten Umgebungen entscheidend. Bei denjenigen, die Analytics Engineers werden wollen, handelt es sich größtenteils um Datenanalysten oder Dateningenieure, die sich auf die Datenmodellierung spezialisieren wollen.
  • Fortgeschrittene SQL-Kenntnisse: Die Beherrschung von SQL ist für einen Analytics Engineer unerlässlich, da die meisten seiner Aufgaben die Abfrage, Manipulation und Umwandlung von Daten in Datenbanken beinhalten. SQL ist entscheidend für die Extraktion genauer Informationen, die die Daten für die anschließende Analyse vorbereiten.
  • Programmierkenntnisse: Zusätzlich zu SQL ist die Beherrschung von Programmiersprachen wie R und Python von entscheidender Bedeutung. Diese Sprachen sind für die Visualisierung von Daten sowie für die Entwicklung von Vorhersagemodellen und Algorithmen für maschinelles Lernen unerlässlich.
  • Beherrschung der DBT-Technologie: Dbt (Data Build Tool) ist ein Datenumwandlungstool, das die Implementierung von Analysecode über SQL erleichtert. Es ermöglicht Analytics Engineers die effiziente Erstellung und Verwaltung von Datenpipelines.
  • Software-Engineering-Kenntnisse: Für einen Analytik Engineer ist es unerlässlich, die besten Praktiken des Software-Engineerings zu kennen und anzuwenden, z. B. Modularität, Wiederverwendbarkeit von Code, Dokumentation, Unit-Tests und Release-Management. Die Anwendung dieser Praktiken verbessert nicht nur die Robustheit des Codes, sondern ermöglicht auch die Entwicklung effizienterer Datenpipelines. Sie erleichtern auch das Change Management und stärken die Zusammenarbeit mit anderen Mitgliedern des Entwicklungsteams.

Kenntnisse von BI- und Data-Engineering-Tools: Ein Analytik-Ingenieur muss unbedingt ein gutes Verständnis für Data-Engineering- und Business-Intelligence (BI)-Tools haben. Dazu gehören Kenntnisse über Data Warehouses wie Snowflake, Amazon Redshift und Google BigQuery, ETL-Tools wie AWS Glue und Talend sowie BI-Plattformen wie Tableau und Looker. Die praktische Erfahrung mit diesen Technologien erhöht nicht nur seine Vielseitigkeit, sondern ermöglicht auch eine schnelle Anpassung an das Geschäftsumfeld.

Der Lehrplan
Akkordeon Inhalt

Es gibt keine offiziellen Voraussetzungen, wir empfehlen jedoch dringend einen Bachelor-Level in einem wissenschaftlichen Fach. Diese Voraussetzungen bestehen, weil sich die Ausbildung zwar auf die Datenwissenschaft und nicht auf die Mathematik konzentriert, letztere aber für ein erfolgreiches Verständnis der behandelten Konzepte notwendig ist. Um an dem Kurs teilnehmen zu können, muss jeder zuvor einen (kostenlosen) Test absolvieren.

Um an dem Kurs teilnehmen zu können, benötigen die Lernenden außerdem einen Computer mit Internetanschluss und eine Webcam.

Die Ausbildung umfasst insgesamt 600 Stunden, von denen 150 Stunden auf Projekte entfallen. 85 % der Ausbildung finden auf einer personalisierten Coaching-Plattform statt, während die restlichen 15 % in Form von Masterclasses abgehalten werden, bei denen ein erfahrener Lehrer einen Kurs leitet und alle Ihre Fragen beantwortet. Der Lehrplan setzt sich aus 2 Modulen zusammen: Data Analyst & ETL Developer.
Neben der Plattform und den Masterclasses arbeiten Sie so an berufsbezogenen Projekten, die es Ihnen ermöglichen, nach dem Abschluss Ihres Kurses voll betriebsfähig zu sein.

Die 150 Stunden, die den Projekten zuzuordnen sind, verteilen sich wie folgt:
– Data Analyst Projekt: 90h; – ETL Developer Projekt: 60h; –
Der Analytics Engineer Kurs bietet Ihnen die Möglichkeit, einen Trainingsplan zu wählen, der Ihren Bedürfnissen entspricht: – Bootcamp-Format, intensiver Zeitplan von 35 Stunden pro Woche für 5 Monate – Teilzeitformat, das ein Engagement von 10 Stunden pro Woche für 12 Monate erfordert.
Buchen Sie einen Termin und erfahren Sie mehr

Die Bewertung der Ergebnisse erfolgt durch die Durchführung eines Bewertungsverfahrens, um festzustellen, ob der Schüler die für die Rolle des Analytics Engineer erforderlichen Fähigkeiten erworben hat.
Es gibt zwei Aspekte, die vom pädagogischen Team bewertet werden:
– Projekte, um den Lernenden in eine berufliche Situation zu versetzen
– Online-Praxisfälle zur schrittweisen Anwendung der theoretischen Kenntnisse.

Es gibt zwei Aspekte, die vom pädagogischen Team bewertet werden:
– Projekte, um den Lernenden in eine berufliche Situation zu versetzen
– Online-Praxisfälle zur schrittweisen Anwendung der theoretischen Kenntnisse.

Schließlich werden die Online-Bewertungen von unserem Gremium qualifizierter Lehrkräfte von Hand korrigiert: Es wird alles getan, um sicherzustellen, dass jeder Lernende effizient und in seinem eigenen Tempo Fortschritte machen kann. Wir bei DataScientest sind davon überzeugt, dass nur eine individuelle Betreuung die Qualität des Lernens gewährleistet!

Am Ende des Kurses werden Sie in der Lage sein:

  • Sortieren, Bereinigen und Verarbeiten von Daten für die Analyse
  • Entwicklung von Modellen des maschinellen Lernens für prädiktive Analysen
  • Ergebnisse interpretieren und Dashboards erstellen
  • Beherrschen von Datenmodellierungs- und Transformationstechniken.
  • Entwerfen und Verwalten von Datenpipelines.
  • Verwalten eines Datenprojekts

Während der gesamten Ausbildung und je nach Entwicklung Ihrer Fähigkeiten werden Sie mehrere Projekte in Gruppen durchführen, je nach der Aufteilung des Lehrplans:

Modul

Projekt

Data Analyst

Entwicklung einer Datenlösung.

ETL Developer

Erstellung einer ETL-Pipeline, von der Rohdatengewinnung bis zur Modellierung und Visualisierung.



Diese Projekte können aus unserem Katalog entnommen werden, der eine breite Palette von Themen umfasst, die sich auf technische Unternehmensfragen beziehen. Sie können auch eigene Projekte vorschlagen, sofern die Daten zugänglich sind und unser Lehrerteam sie validiert.

Dies ist eine äußerst effektive Methode, um die Theorie in die Praxis umzusetzen und sicherzustellen, dass Sie die im Unterricht behandelten Themen anwenden.

Diese Projekte werden von Unternehmen sehr geschätzt, da sie die Qualität der Ausbildung und die am Ende des Kurses für Analytics Engineer erworbenen Kenntnisse gewährleisten, da auch die Soft Skills sehr gefragt sind. Diese Projekte werden Ihnen beibringen:

  • Informationen übermitteln;
  • Ihre Arbeit zu präsentieren und zu veröffentlichen;
  • Hervorhebung von Daten mit interaktiven Tools (Dashboard, Streamlit…).

Das heißt, diese Projekte erfordern eine echte Investition, die mindestens ein Drittel Ihrer Ausbildungszeit ausmacht.

Die 150 Stunden, die für die Projekte im Rahmen des Lehrplans vorgesehen sind, lassen sich wie folgt aufteilen::

  • Data Analyst Projekt: 90h ;
  • ETL Developer Projekt: 60h ;

Die Projekte werden von DataScientest-Mentoren betreut, die in regelmäßigem Kontakt mit Ihnen stehen, um Ihre Fortschritte zu überwachen und Sie zu beraten.

Wenn Sie Ihre Kenntnisse vertiefen möchten, hat DataScientest eine Reihe von Expertenkursen und Herausgeberzertifizierungen (AWS oder Microsoft Azure) eingerichtet, die Ihnen helfen, Ihr Wissen zu vertiefen und Ihre Datenkenntnisse zu perfektionieren.

Sie können den vollständigen Power BI-Trainingskurs auch als 100 % synchronen Pfad absolvieren, wenn Sie Ihre Kenntnisse vertiefen und Ihre Chancen auf den Status „Microsoft Power BI Data Analyst Associate“ im Anschluss an den Analytics Engineer-Trainingskurs erhöhen möchten.

Als B2B-Führer im Bereich Data-Science-Ausbildung genießt DataScientest einen hohen Bekanntheitsgrad bei den Unternehmen, die uns mit der Data-Science-Ausbildung ihrer Teams vertrauen. Dieses Vertrauen führt dazu, dass viele große Unternehmen unser Diploma gerne sehen.

Die Karriere

Das Gehalt eines Analytics Engineer in Europa hängt von mehreren Schlüsselfaktoren wie Erfahrung, Qualifikationsniveau und geografischer Lage ab. Laut Talent.com liegt das durchschnittliche Jahresgehalt für diese Position bei etwa 54.000 €. Dieser Betrag kann jedoch je nach Erfahrung beträchtlich variieren: Berufsanfänger können mit einem Gehalt von etwa 43.625 € pro Jahr beginnen, während erfahrenere Fachleute 78.000 € pro Jahr erreichen oder überschreiten können.

Die Nachfrage nach Fähigkeiten im Bereich Analytics Engineering, die je nach Marktbedarf schwanken kann, spielt bei der Festlegung der Gehälter eine Rolle. Darüber hinaus ist der geografische Standort ein wichtiger Faktor: Die Gehälter sind in der Regel in Großstädten, Ländern und Regionen mit einem gut entwickelten Technologiesektor höher. Schließlich können auch die gesammelte Erfahrung, fortgeschrittene Fähigkeiten und Zertifizierungen das Verdienstpotenzial dieser Fachkräfte erhöhen.

An Ihrem ersten Ausbildungstag erhalten Sie Zugriff auf eine spezielle Plattform für Karrieredienste, die alle wichtigen Workshops für Ihre Arbeitssuche enthält. Sie können auch nach Abschluss Ihrer Ausbildung ständig darauf zugreifen. Der Career Management Pole steht Ihnen während Ihrer gesamten Ausbildung zur Verfügung. Es besteht auch die Möglichkeit, einen individuellen Termin mit einem der Mitarbeiter zu vereinbaren, der Sie unterstützt und Ihre Fragen zu Ihrem Karrierevorhaben beantwortet.
Jeden Monat: – Ein ganzer Tag wird organisiert, um Sie bei der Optimierung Ihrer Stellensuche zu unterstützen, mit verschiedenen Themen zu Präsentation, Karrierewechsel, Gehaltsverhandlungen und technischen Testverfahren. Diese Themen werden durch weitere Workshops ergänzt, die je nach den individuellen Bedürfnissen festgelegt werden. – Sie profitieren von einem Karriereworkshop, der von einem erfahrenen Senior Consultant geleitet wird. – Es werden verschiedene Themen behandelt, die bei der Stellensuche helfen: Bekämpfung des Imposter-Syndroms, Aufbau eines Netzwerks, Verfassen eines guten Lebenslaufs und datenorientiertes Linkedin. – Nehmen Sie an einem Alumni-Talk teil. Ein Alumni ergreift das Wort, um seine Erfahrungen mit der Ausbildung und der Stellensuche zu teilen und Ihnen Tipps zu verleihen. Andererseits werden konkrete Maßnahmen ergriffen, um Sie bei der Stellensuche zu unterstützen: die von DataScientest mit seinen Partnerunternehmen organisierte Recruiting-Messe, die Organisation von Webinaren mit Datenexperten, Kommunikationsmaßnahmen zur Steigerung Ihrer Sichtbarkeit (Lebenslaufwettbewerb, DataDays, Projektartikel, die im Blog und in externen Referenzmedien veröffentlicht werden).

Außerdem wurde ein spezieller Slack-Channel für Arbeitssuchende eingerichtet, über den alle Workshop-Informationen und Jobangebote weitergeleitet werden.

Laut den Datenmanagern der größten Fortune-500-Unternehmen ist die Beherrschung der mündlichen und schriftlichen Kommunikation für einen Analytics Engineer wichtiger als die Beherrschung des Kerngeschäfts des Unternehmens. Diesem Umstand haben wir in unserem Lehrplan Rechnung getragen, der auch die Soft Skills in den Vordergrund stellt: – Mündliche Projektverteidigungen, die zur Entwicklung dieser Fähigkeiten beitragen. – Masterclasses zum Projektmanagement und zur Interpretation der Ergebnisse. – Masterclasses zu Best Practices über spezielle Tools. Sie werden auch die Möglichkeit haben, an Lebenslauf-Workshops und Karriere-Coaching durch die Karrieremanager von DataScientest teilzunehmen.

Weitere Angebote
Akkordeon Inhalt

Unsere Data Scientists verschicken regelmäßig Newsletter. Diese sind eine zuverlässige Quelle für Fachinformationen aus dem Bereich Data Science.

Außerdem wächst unsere Community weiter. Um den Kontakt aufrechtzuhalten und den Teilnehmenden die Möglichkeit zu geben, sich untereinander auszutauschen, hat DataScientest eine Gruppe für seine Alumni auf LinkedIn eingerichtet, die Informationen zu verschiedenen Data Science-Themen teilen.

Die  DatAlumni Community,  ist eine LinkedIn-Community, die DataScientest-Alumni zusammenbringt. Auf dieser Seite werden Fragen, Tipps und technologische Neuigkeiten zum Nutzen aller geteilt.

Darüber hinaus wird DataScientest in den kommenden Wochen ein Trombinoskop einführen, das Alumni in Kontakt bringt.

Am Anfang begleitete DataScientest die Unternehmen bei ihrem digitalen Wandel. Dadurch sind starke Verbindungen entstanden, die das Wachstum unserer Struktur gewährleistet haben.

Aufgrund unserer Erfahrung mit Großunternehmen organisieren wir regelmäßig Rekrutierungsmessen mit unseren Partnerunternehmen, die sich an alle unsere Teilnehmenden und Alumni richten.

Am ersten Tag wird dir eine Plattform für Karrieredienste mit allen für deine Arbeitssuche wichtigen Workshops vorgestellt.

Du kannst kontinuierlich darauf zugreifen, auch nach Beendigung deiner Weiterbildung.

Morgane und Estelle, unsere Karrieremanager, sind während deiner gesamten Weiterbildung für dich da. Du kannst einen individuellen Termin mit ihnen vereinbaren, um dich zu beraten und alle Fragen zu deinem Karriereplan zu beantworten.

Darüber hinaus werden jeden Monat Karriereworkshops organisiert:

  • Ein Workshop, der dir hilft, einen guten Lebenslauf und ein datenorientiertes LinkedIn Profil zu erstellen,
  • Ein Workshop, der dir hilft, deine Jobsuche strategisch zu planen, mit verschiedenen Themen zu Präsentation, Karrierewechsel, Gehaltsverhandlungen und technischem Testtraining.

Zusätzlich zu diesen Themen gibt es weitere Workshops, die je nach den individuellen Bedürfnissen festgelegt werden. Andererseits werden konkrete Aktionen durchgeführt, um dich bei deiner Jobsuche zu unterstützen: eine von DataScientest mit seinen Partnerunternehmen organisierte Recruiting-Messe, die Organisation von Webinaren mit Datenexperten, Kommunikationsaktionen zur Steigerung deiner Sichtbarkeit (Lebenslaufwettbewerb, DataDays, Projektartikel, die im Blog und in externen Referenzmedien veröffentlicht werden).

Um mehr über alle karrierefördernden Maßnahmen von DataScientest zu erfahren, klicke auf diesen Link.

Haben wir Dein Interesse geweckt?​