🚀 Bist Du bereit für eine Karriere im Bereich Data? Finde es in nur 60 Sekunden heraus!

Data Analyst: Voraussetzungen und Fähigkeiten für den Berufseinstieg

-
3
 Minuten Lesezeit
-
data analystwerden

Der Data Analyst ist dafür verantwortlich, eine große Datenbank zu nehmen und daraus Daten und Informationen zu extrahieren, die für alle lesbar sind. Je nach den Anforderungen der Abteilungen eines Unternehmens ist er in der Lage, genaue und nützliche Zahlen für die Aktionen seiner Kollegen zu erstellen. Er ist ein echter Spezialist für Datenmodellierung und kann nach einigen Jahren Erfahrung zum Data Scientist werden. Sehen wir uns einmal an, welche Voraussetzungen Du mitbringen musst, wenn Du Data Analyst werden willst.

Welche Qualitäten und Fähigkeiten braucht man, um Datenanalyst zu werden?

Wenn Du ein erfolgreicher Data Analyst werden willst, musst Du vor allem Statistik lieben. Zahlen sollten eine Deiner Lieblingssprachen sein! Tabellen, Diagramme, Bilanzen … Das sind die wichtigsten Arbeitsmittel eines Datenanalysten, wenn du sie kurz zusammenfasst.

Du musst also sowohl die Computersprache als auch die statistischen Werkzeuge perfekt beherrschen. Wie bei allen Tätigkeiten, bei denen Du mit Zahlen arbeiten musst, solltest Du über ein hohes Maß an Genauigkeit, analytisches Denken und Organisationstalent verfügen. Auch Konzentrationsfähigkeit ist eine der wichtigsten Fähigkeiten, die ein guter Datenanalyst haben muss.

Wenn Du in ein Unternehmen eintrittst, um diese Tätigkeit auszuüben, musst Du natürlich die Regeln der Vertraulichkeit und der Nichtweitergabe von sensiblen Informationen einhalten. Die Beherrschung der englischen Sprache wird empfohlen, um in einem stark internationalisierten Bereich arbeiten zu können.

 

💡Diese Artikel könnten Dich auch interessieren!:

Data Engineer Skills
Data Loss Prevention
Data Warehouse
Data Science Bootcamp
Wie wird man Data Analyst
Data Science Definition und Use Cases

Was sind die Voraussetzungen, um Data Analyst mit DataScientest zu werden?

Mathematische Voraussetzungen

Um Zugang zu Datenberufen wie dem des Data Analyst zu erhalten, musst Du zunächst einen soliden mathematischen Hintergrund haben. Um in der Datenwissenschaft arbeiten zu können, musst Du bestimmte mathematische Konzepte beherrschen.

Statistik

Das wichtigste mathematische Fach, das für Data Analysts nützlich ist, ist das Studium der Statistik. Data Science sollte jedoch nicht mit Statistik verwechselt werden. Obwohl diese beiden Bereiche ähnliche Fähigkeiten und gemeinsame Ziele haben, unterscheiden sie sich deutlich voneinander.

Die Data Science basiert stark auf der Nutzung der Leistungsfähigkeit von Computern und Technologie. Sie ermöglicht den Zugriff auf Informationen aus großen Datenbanken, die Verwendung von Codes, um sie zu manipulieren und zu visualisieren.

Die Statistik verwendet in der Regel etablierte Theorien und konzentriert sich mehr auf die Überprüfung von Hypothesen. Es handelt sich um eine traditionellere Disziplin, die sich in den letzten 50 Jahren allgemein gesehen kaum verändert hat, während sich die Datenwissenschaft im Wesentlichen mit dem zunehmenden Einsatz von Computern weiterentwickelt hat.

Der Data Analyst schlägt eine Brücke zwischen Datenwissenschaft und Statistik. Tatsächlich nutzt er täglich statistische Werkzeuge, um aus einer großen Menge an Daten konkrete Schlussfolgerungen zu ziehen. Die notwendigsten sind:

  • Die Eigenschaften von Median, Standardabweichung, Varianz, Mittelwert, Modus.
  • Zufallszahlengenerator, Berechnung von Fehlern.
  • Modell der linearen Regression
  • Theorie der Schätzung
  • Lineare Algebra

Die lineare Algebra erleichtert die Verwaltung der gesammelten Daten. Das Beherrschen der linearen Algebra im Vorfeld der Ausbildung hilft Dir, die Räume besser zu verstehen, in denen die meisten Machine-Learning-Algorithmen und statistischen Techniken eingesetzt werden. Tatsächlich verwenden alle Machine-Learning-Algorithmen Techniken der linearen Algebra, um Netzwerkstrukturen und Lernoperationen darzustellen und zu verarbeiten. Die wichtigsten Themen, die man in der linearen Algebra behandeln kann, sind:

  • Lineare Anwendung, Transponierte von Matrizen, Lineare Gleichungssysteme.
  • Zerlegung von Matrizen
  • Vektorraum
  • Wahrscheinlichkeitsrechnung

Schließlich hat der Beruf des Datenanalysten auch mit Wahrscheinlichkeiten zu tun. Die Wahrscheinlichkeitstheorie befasst sich mit der Schätzung des Eintretens eines Ereignisses unter Verwendung von zufälligen und unabhängigen Variablen. Mehrere wahrscheinlichkeitstheoretische Werkzeuge können in den Beruf des Datenanalysten integriert werden:

 

  • Gleichverteilung, Normalverteilung, Binomialverteilung, Fischverteilung,
    Bayes’sches Theorem, bedingte Wahrscheinlichkeit,
  • Monte-Carlo-Methode (Schätzung des Mittelwerts einer Zufallsvariablen),

Voraussetzungen für das Programmieren

Data Analysts verwenden viele mathematische Werkzeuge, indem sie Modelle erstellen, um aus den analysierten Daten einen Wert zu ziehen. Sie verwenden dazu hauptsächlich maschinelles Lernen.

Man kann davon ausgehen, dass Data Analysts keine besonderen Programmierkenntnisse benötigen, um mit dem Beruf zu beginnen. Alle Konzepte werden in der Weiterbildung von DataScientest behandelt. Es ist nicht notwendig, die ersten Grundlagen der Programmierung und der Data Science zu beherrschen, denn die DataScientest Weiterbildung deckt alle wichtigen Themengebiete ab. Im Gegensatz zu Data Scientists, für die ein Grundwissen in Programmierung für den Anfang besser ist.

 

💡Noch mehr interessante Lektüre für Dich:

Data Analyst Course Online: Was sind die Zulassungsbedingungen ?
Data Scientist vs. Data Analyst: Welche Unterschiede gibt es?
SQL GROUP BY: Der unverzichtbare SQL-Befehl für Data Analysts
Data Analyst: Aufgaben, Kompetenzen, Gehalt und Weiterbildung
Wie wird man Data Analyst?

Hast Du das Zeug zum Data Analyst? Na klar!

Möchtest Du ein Experte in Sachen Datenanalyse werden? Entdecke unsere Weiterbildungen! Wir empfehlen Dir, einen Termin mit unseren Beratern zu vereinbaren, damit Du im persönlichen Gespräch über Deine Karrierepläne und -projekte reden kannst. Wir freuen uns auf Dich!

DataScientest News

Melde Dich jetzt für unseren Newsletter an, um unsere Guides, Tutorials und die neuesten Entwicklungen im Bereich Data Science direkt per E-Mail zu erhalten.

Möchtest Du informiert bleiben?

Schreib uns Deine E-Mail-Adresse, damit wir Dir die neuesten Artikel zum Zeitpunkt der Veröffentlichung zusenden können!
icon newsletter

DataNews

Starte Deine Karriere im Bereich Data: Erhalte regelmäßig Insiderwissen und wertvolle Karrieretipps in Deinem Posteingang.