Le Deep Learning est une discipline d’intelligence artificielle, et plus précisément une branche du Machine Learning. Elle consiste à laisser les machines apprendre à partir de leurs expériences, à la manière des humains.

La différence avec le Machine Learning est que les algorithmes de Deep Learning n’ont pas réellement de limite en termes de capacité d’apprentissage. Plus ils reçoivent de données sur lesquels s’entraîner, plus ces systèmes améliorent leurs performances.

Les réseaux de neurones artificiels sur lesquels repose le Deep Learning apprennent en découvrant des structures dans les données qui leur sont fournies. Ces réseaux développent des modèles de calculs composés de multiples couches de traitement, afin de créer de multiples niveaux d’abstraction pour représenter les données.

Un modèle de Deep Learning de type réseau neuronal convolutif peut être entraîné sur des millions d’images de chats. Il apprendra alors à reconnaître les pixels représentant un chat, afin de les classifier comme tels.

Avec un système de Machine Learning conventionnel, un expert humain devrait passer un temps considérable à paramétrer le système pour lui permettre de détecter les caractéristiques du chat. Dans le cas du Deep Learning, il suffit de lui fournir une grande quantité d’images.

Les performances des algorithmes de Deep Learning surpassent celles des systèmes de Machine Learning dans un grand nombre de tâches dont la vision par ordinateur, la reconnaissance de discours ou la robotique. Il est toutefois nécessaire de configurer les ” hyperparamètres ” pour que le modèle soit efficace.

Le Deep Learning est utilisé pour une large variété d’applications telles que la détection de maladie, l’inspection d’équipement industriel, les véhicules autonomes, la découverte d’exoplanètes ou de médicaments, l’étude du génome ou encore la lutte contre le réchauffement climatique.

NLP- Word translation

Aujourd’hui, nous allons vous présenter le 4ème volet de notre passionnant dossier NLP.  Dans cet article, nous allons voir comment construire un algorithme de traduction sur Python -machine translation en…

Continuer la lecture NLP- Word translation

Le Word Embedding

Dans un précédent article, nous avons défini le NLP- Natural Language Processing. Dans cet article, nous allons nous intéresser à l'une de ses méthodes principales, le word embedding. Le word embedding…

Continuer la lecture Le Word Embedding

Computer vision

Des filtres de Snapchat aux voitures autonomes, en passant par la détection de cancers, la Computer Vision est aujourd’hui partout autour de nous. Elle est aussi efficace qu’elle balaie des…

Continuer la lecture Computer vision