No-Code-Leitfaden: Digitale Lösungen ohne Programmierung
No-Code revolutioniert die digitale Welt, da es Dir ermöglicht, Anwendungen, Websites und Automatisierungen zu gestalten – ganz ohne eine einzige Zeile Code zu schreiben. Dieser Ansatz ist
🚀 Bist Du bereit für eine Karriere im Bereich Data? Finde es in nur 60 Sekunden heraus!
Le Deep Learning est une discipline d’intelligence artificielle, et plus précisément une branche du Machine Learning. Elle consiste à laisser les machines apprendre à partir de leurs expériences, à la manière des humains.
La différence avec le Machine Learning est que les algorithmes de Deep Learning n’ont pas réellement de limite en termes de capacité d’apprentissage. Plus ils reçoivent de données sur lesquels s’entraîner, plus ces systèmes améliorent leurs performances.
Les réseaux de neurones artificiels sur lesquels repose le Deep Learning apprennent en découvrant des structures dans les données qui leur sont fournies. Ces réseaux développent des modèles de calculs composés de multiples couches de traitement, afin de créer de multiples niveaux d’abstraction pour représenter les données.
Un modèle de Deep Learning de type réseau neuronal convolutif peut être entraîné sur des millions d’images de chats. Il apprendra alors à reconnaître les pixels représentant un chat, afin de les classifier comme tels.
Avec un système de Machine Learning conventionnel, un expert humain devrait passer un temps considérable à paramétrer le système pour lui permettre de détecter les caractéristiques du chat. Dans le cas du Deep Learning, il suffit de lui fournir une grande quantité d’images.
Les performances des algorithmes de Deep Learning surpassent celles des systèmes de Machine Learning dans un grand nombre de tâches dont la vision par ordinateur, la reconnaissance de discours ou la robotique. Il est toutefois nécessaire de configurer les ”hyperparamètres” pour que le modèle soit efficace.
Le Deep Learning est utilisé pour une large variété d’applications telles que la détection de maladie, l’inspection d’équipement industriel, les véhicules autonomes, la découverte d’exoplanètes ou de médicaments, l’étude du génome ou encore la lutte contre le réchauffement climatique.
No-Code revolutioniert die digitale Welt, da es Dir ermöglicht, Anwendungen, Websites und Automatisierungen zu gestalten – ganz ohne eine einzige Zeile Code zu schreiben. Dieser Ansatz ist
AutoGen ist ein Open-Source-Framework von Microsoft, das mehrere KI-Agenten orchestriert und sie zu einem kooperierenden Team formt. Erfahre, wie es die Nutzung generativer KIs revolutioniert, indem es
Crew AI ist ein Open-Source-Framework, das mehrere künstliche Intelligenzen wie ein echtes Projektteam zusammenarbeiten lässt. Entdecke, wie dieses Tool KI-Agenten in Spezialisten verwandelt, die kommunizieren, sich koordinieren
LangChain ermöglicht die Entwicklung von KI-Anwendungen, die in natürlicher Sprache mit Daten, Tools und sogar Benutzern interagieren können. Erfahre, warum dieses Open-Source-Framework immer häufiger das Herzstück für
Lovable ist eine KI-Plattform, die es ermöglicht, vollständige Anwendungen allein durch einfache Gespräche zu erstellen. Erfahre, wie dieses schwedische Tool die Entwicklung revolutioniert – mit dem Versprechen,
Salesforce Lightning ist eine umfassende Überarbeitung der Benutzeroberfläche von Salesforce. Ziel: ein modernes, flüssiges und hochgradig anpassbares Nutzererlebnis schaffen – um die Produktivität zu steigern und die