Deep learning

Le Deep Learning est une discipline d’intelligence artificielle, et plus précisément une branche du Machine Learning. Elle consiste à laisser les machines apprendre à partir de leurs expériences, à la manière des humains.

La différence avec le Machine Learning est que les algorithmes de Deep Learning n’ont pas réellement de limite en termes de capacité d’apprentissage. Plus ils reçoivent de données sur lesquels s’entraîner, plus ces systèmes améliorent leurs performances.

Les réseaux de neurones artificiels sur lesquels repose le Deep Learning apprennent en découvrant des structures dans les données qui leur sont fournies. Ces réseaux développent des modèles de calculs composés de multiples couches de traitement, afin de créer de multiples niveaux d’abstraction pour représenter les données.

Un modèle de Deep Learning de type réseau neuronal convolutif peut être entraîné sur des millions d’images de chats. Il apprendra alors à reconnaître les pixels représentant un chat, afin de les classifier comme tels.

Avec un système de Machine Learning conventionnel, un expert humain devrait passer un temps considérable à paramétrer le système pour lui permettre de détecter les caractéristiques du chat. Dans le cas du Deep Learning, il suffit de lui fournir une grande quantité d’images.

Les performances des algorithmes de Deep Learning surpassent celles des systèmes de Machine Learning dans un grand nombre de tâches dont la vision par ordinateur, la reconnaissance de discours ou la robotique. Il est toutefois nécessaire de configurer les ”hyperparamètres” pour que le modèle soit efficace.

Le Deep Learning est utilisé pour une large variété d’applications telles que la détection de maladie, l’inspection d’équipement industriel, les véhicules autonomes, la découverte d’exoplanètes ou de médicaments, l’étude du génome ou encore la lutte contre le réchauffement climatique.

NLP

NLP Twitter – Analyse de Sentiment

Aujourd’hui, Twitter est utilisé par des centaines de millions de personnes dans le monde entier. Plus précisément, l’estimation actuelle s’élève à environ 330 millions d’utilisateurs actifs mensuels

Lire la suite
word translation

NLP- Word translation

Aujourd’hui, nous allons vous présenter le 4ème volet de notre passionnant dossier NLP.  Dans cet article, nous allons voir comment construire un algorithme de traduction sur Python

Lire la suite
word2vec

Word2vec : NLP & Word Embedding

Le word embedding désigne un ensemble de méthode d’apprentissage visant à représenter les mots d’un texte par des vecteurs de nombres réels.  Aujourd’hui, nous allons vous présenter

Lire la suite