Deep learning

Le Deep Learning est une discipline d’intelligence artificielle, et plus précisément une branche du Machine Learning. Elle consiste à laisser les machines apprendre à partir de leurs expériences, à la manière des humains.

La différence avec le Machine Learning est que les algorithmes de Deep Learning n’ont pas réellement de limite en termes de capacité d’apprentissage. Plus ils reçoivent de données sur lesquels s’entraîner, plus ces systèmes améliorent leurs performances.

Les réseaux de neurones artificiels sur lesquels repose le Deep Learning apprennent en découvrant des structures dans les données qui leur sont fournies. Ces réseaux développent des modèles de calculs composés de multiples couches de traitement, afin de créer de multiples niveaux d’abstraction pour représenter les données.

Un modèle de Deep Learning de type réseau neuronal convolutif peut être entraîné sur des millions d’images de chats. Il apprendra alors à reconnaître les pixels représentant un chat, afin de les classifier comme tels.

Avec un système de Machine Learning conventionnel, un expert humain devrait passer un temps considérable à paramétrer le système pour lui permettre de détecter les caractéristiques du chat. Dans le cas du Deep Learning, il suffit de lui fournir une grande quantité d’images.

Les performances des algorithmes de Deep Learning surpassent celles des systèmes de Machine Learning dans un grand nombre de tâches dont la vision par ordinateur, la reconnaissance de discours ou la robotique. Il est toutefois nécessaire de configurer les ”hyperparamètres” pour que le modèle soit efficace.

Le Deep Learning est utilisé pour une large variété d’applications telles que la détection de maladie, l’inspection d’équipement industriel, les véhicules autonomes, la découverte d’exoplanètes ou de médicaments, l’étude du génome ou encore la lutte contre le réchauffement climatique.

Cet article est le premier d’une série consacrée au Deep Learning : Après avoir présenté dans les grandes lignes le fonctionnement et les applications des réseaux de neurones, vous découvrirez plus en détails  dans les articles suivants les principaux types de réseaux et leurs architectures, ainsi que des méthodes et divers exemples d’applications du Deep Learning aujourd’hui. Démarrons sans plus tarder notre Introduction au Deep Learning.

Deep Learning: Définition et applications

Depuis quelques années, un nouveau lexique lié à l’émergence de l’intelligence artificielle dans notre société inonde les articles scientifiques, et il est parfois difficile de comprendre de quoi il s’agit. Lorsqu’on parle d’intelligence artificielle, on fait très souvent l’allusion aux technologies associées comme le Machine learning ou le Deep learning. Deux termes extrêmement utilisés avec des applications toujours plus nombreuses, mais pas toujours bien définis. 

Pour commencer, revenons sur ces trois définitions essentielles: 

L’intelligence artificielle : c’est un champ de recherche qui regroupe l’ensemble des techniques et méthodes qui tendent à comprendre et reproduire le fonctionnement d’un cerveau humain.

Le Machine Learning : c’est un ensemble de techniques donnant la capacité aux machines d’apprendre automatiquement un ensemble de règles à partir de données. Contrairement à la programmation qui consiste en l’exécution de règles prédéterminées.

Le Deep Learning ou apprentissage profond : c’est une technique de machine learning reposant sur le modèle des réseaux neurones: des dizaines voire des centaines de couches de neurones sont empilées pour apporter une plus grande complexité à l’établissement des règles.

Qu’est ce que le Machine Learning : Apprentissage supervisé et non supervisé, pas de panique, on vous explique tout !

Le Machine Learning est un ensemble de techniques donnant la capacité aux machines d’apprendre, contrairement à la programmation qui consiste en l’exécution de règles prédéterminées. 

Il existe deux principaux types d’apprentissages en Machine Learning. L’apprentissage supervisé et non supervisé. 

En apprentissage supervisé, l’algorithme est guidé avec des connaissances préalables de ce que devraient être les valeurs de sortie du modèle. Par conséquent, le modèle ajuste ses paramètres de façon à diminuer l’écart entre les résultats obtenus et les résultats attendus. La marge d’erreur se réduit ainsi au fil des entraînements du modèle, afin d’être capable de l’appliquer à de nouveaux cas.

Deep Learning
Convergence d’un modèle -Apprentissage supervisé
En revanche, l’apprentissage non supervisé n’utilise pas de données étiquetées. Il est alors impossible à l’algorithme de calculer de façon certaine un score de réussite. Son objectif est donc de déduire les regroupements présents dans nos données.   Prenons l’exemple, d’un jeu de données de fleurs, on recherche à les regrouper en classes. Ici, nous ne connaissons pas l’espèce de la plante, mais nous voulons essayer de les regrouper :
  • Exemple: si les formes des fleurs sont similaire alors elles sont en rapport avec une même plante correspondante.
Il existe deux principaux domaines de modèles dans l’apprentissage non-supervisées pour retrouver les regroupements :
  • Les méthodes par partitionnement : les algorithmes des k-means.
  • Les méthodes de regroupement hiérarchique : classification ascendante hiérarchique (CAH)
Deep Learning
Kmeans avec k=3

Si on passait au Deep learning ?

Le Deep learning  ou apprentissage profond est l’une des technologies principales du Machine learning. Avec le Deep Learning, nous parlons d’algorithmes capables de mimer les actions du cerveau humain grâce à des réseaux de neurones artificielles.  Les réseaux sont composés de dizaines voire de centaines de « couches » de neurones, chacune recevant et interprétant les informations de la couche précédente.

Deep Learning
Source: Medium

Chaque neurone artificiel représenté dans l’image précédente par un rond, peut être vu comme un modèle linéaire. En interconnectant les neurones sous forme de couche, nous transformons notre réseau de neurones en un modèle non-linéaire très complexe.

Deep Learning
Source: Machine Learnia

Pour illustrer le concept, prenons un problème de classification entre chien et chat à partir d’image. Lors de l’apprentissage, l’algorithme va ajuster les poids des neurones de façon à diminuer l’écart entre les résultats obtenus et les résultats attendus. Le modèle pourra apprendre à détecter les triangles dans une image puisque les chats ont des oreilles beaucoup plus triangulaires que les chiens.

Pourquoi utilisons-nous le Deep learning ?

Les modèles de Deep learning ont tendance à bien fonctionner avec une grande quantité de données alors que les modèles d’apprentissage automatique plus classique cessent de s’améliorer après un point de saturation.

Deep learning
Source: Medium

Au fil des années, avec l’émergence du big data et de composants informatiques de plus en plus puissant, les algorithmes de Deep Learning gourmands en puissance et en données ont dépassé la plupart des autres méthodes. Ils semblent être prêt à résoudre bien des problèmes : reconnaître des visages, vaincre des joueurs de go ou de poker, permettre la conduite de voitures autonomes ou encore la recherche de cellules cancéreuses.

Implication de l’intelligence artificielle sur le monde du travail.

Presque toutes les industries sont affectées par l’IA. Le Machine learning et le Deep Learning y jouent un grand rôle. 

Que vous soyez un professionnel de la santé ou un avocat, il est possible qu’un jour un modèle hautement autonome vous assiste ou même vous remplace.

Dans les métiers de la santé, il existe déjà des applications pour automatiquement diagnostiquer un patient.

Deep Learning
Détection automatique de fracture à l’aide du deep learning

Les métiers de l’automobile sont également bousculés avec l’arrivé de la conduite assistée.

C’est aussi grâce au deep Learning que le modèle Alpha Go de Google a réussi à battre les meilleurs champion de Go en 2016. Le moteur de recherche du géant américain est lui-même de plus en plus basé sur l’apprentissage par deep Learning plutôt que sur des règles écrites.

Aujourd’hui le deep Learning est même capable de « créer » tout seul des tableaux de peintre. C’est ce qu’on appelle le Style Transfer. Si ce sujet vous intéresse, un article entièrement consacré à ce thème arrive bientôt sur notre blog ! 

style transfer deep learning
Transfert de style

Dans la suite, nous allons vous présenter les réseaux de neurones avec une approche inédite , on espère que ça vous plaira ! 

Le deep learning comme solution IA dans le e-commerce

Il est évident que le secteur du commerce électronique génère de grandes quantités de données. Les entreprises, les commerçants et les distributeurs sont conscients que les solutions de Big Data pour gérer leurs opérations rendront leur activité plus précieuse. Malgré l’irruption de toutes ces solutions innovantes, le Big Data peut représenter une bénédiction ou une malédiction, selon la façon dont il est utilisé et appliqué.

La révolution de l’intelligence artificielle vise à faciliter la gestion de cette énorme quantité de données, grâce à des technologies intelligentes comme le Deep learning. Elle est essentielle, car elle fournit des éléments pour une meilleure analyse des données.

Dans un cas pratique, l’analyse par l’IA permet à une boutique en ligne de proposer plus facilement des produits intéressants à ses clients, de mettre en évidence leurs préférences et de leur apporter une attention personnalisée. Pour ce faire, le Deep learning automatise ce que l’on appelle l’analyse prédictive. Grâce à cette dernière, les clients peuvent recevoir des suggestions lors d’un achat.

Redéfinition du e-commerce

L’apprentissage profond définit un style lorsqu’il s’agit de faire du commerce électronique. En effet, il ne s’agit pas de créer des sites en ligne qui attirent de grandes proportions d’acheteurs. L’objectif est d’envoyer des messages clairs et individualisés à chacun d’eux.

Le Big Data est soumis à une analyse approfondie grâce au Deep learning, ce qui conduit à faciliter le processus d’achat des clients. Les algorithmes d’apprentissage en profondeur aident l’entreprise à obtenir une meilleure expérience et à garder une trace de ceux qui ont visité son site.

L’apprentissage profond arrive pour faciliter l’expansion du commerce électronique. Les ventes en ligne sont stimulées par les tendances technologiques telles que les chatbots.

D’une certaine manière, le Deep learning redéfinit le commerce en ligne et on n’est qu’aux balbutiements. Par conséquent, ceux qui l’adoptent auront plus d’avantages.

Cet article a 6 commentaires

Laisser un commentaire